The theory of the Neutrino Mass

IV International Workshop on: "Neutrino Oscillations in Venice

Un altro modo di guardare il cielo

April 15-28 2008

Ferruccio Feruglio Universita' di Padova

solution to sol and atm neutrino anomalies was the simplest

- v propagation studied with 4 independent sources
- sun
- cosmic rays
- reactors
- accelerators
- spanning > 12 order of magnitudes in L/E

neutrinoss propagate as massive neutral fermions with specific mixing angles between mass and interaction eigenstates:

$\boldsymbol{\nu}$ oscillations

+ possibly, a number of (still undetected) subleading effects

results can be encoded in a [Lorentz \times SU(2) \times U(1)]-invariant Lagrangian

$$L = L_{SM} + \delta L(m_v) + \dots$$

1st evidence of the incompleteness of the SM additional operators giving negligibly small contributions to ${\bf v}$ propagation in present experiments

L_{SM} invariant under global, non-anomalous

[see Zwirner talk]

From the theory view point the simplest and more appealing (though still unconfirmed) possibility for $\delta L(m_v)$ is the leading non-renormalizable SU(2)xU(1) invariant operator

Weinberg's list

$$L = L_{SM} + \frac{c_5}{\Lambda}L_5 + \frac{c_6}{\Lambda^2}L_6 + \dots$$

[80 independent d=6 operators] Λ= scale of new physics

a unique d=5 operator (up to flavour combinations)

$$\frac{\mathrm{L}_{5}}{\Lambda_{L}} = \frac{(\tilde{H}^{+}l)(\tilde{H}^{+}l)}{\Lambda_{L}} = \frac{1}{2} \frac{v^{2}}{\Lambda_{L}} vv + \dots$$

$$m_v = y \frac{v^2}{\Lambda_L} \longleftrightarrow m_f = \frac{y_f}{\sqrt{2}} v$$

smallness of
$$M_V$$

due to $\frac{v}{\Lambda_L} << 1$

[for a different scenario see Shaposhnikov's talk]

 $m_v \approx \sqrt{\left|\Delta m_{32}^2\right|} \approx 0.05 \text{ eV} \rightarrow \Lambda_L \approx 10^{15} \text{ GeV}$ not that far from GUT scale

the effective theory is "nearly" renormalizable the first effect of New Physics: neutrino masses and mixing angles!

L₅ violates B-L by two units

- B-L violated, in general, when attempting to unify particle interactions (GUTs)
- global quantum numbers expected to be violated at some level by quantum gravity effects

 $\nu\,$ as a window on GUT physics

$$\Lambda_L \approx 10^{15} \; GeV$$

independent indication of a new physical threshold around the GUT scale

- many GUTs contain $\nu^{\rm c}$
- heavy ν^c exchange produces a specific version of L_5

$$\frac{L_5}{\Lambda_L} = -\frac{1}{2} (\tilde{H}^+ l) \Big[y_v^T M^{-1} y_v \Big] (\tilde{H}^+ l) + h.c. + \dots \qquad \text{see-saw mechanism}$$

see-saw can enhance small mixing angles in M and in y_{ν} into the large ones observed in ν oscillations

interesting link to baryogenesis

- B-L violation welcome in baryognesis
- out-of-equilibrium, CP violating decay of $\nu^{\rm c}$ can drive baryogenesis through leptogenesis

if $\delta L(m_v) = L_5$ we expect $0v\beta\beta$ at some level, through the combination $|m_{ee}| = \left|\sum_{i} U_{ei}^2 m_i\right| = \left|\cos^2 \vartheta_{13} (\cos^2 \vartheta_{12} m_1 + \sin^2 \vartheta_{12} e^{2i\alpha} m_2) + \sin^2 \vartheta_{13} e^{2i\beta} m_3\right|$ [notice the ⁱtwo phases α and β , not entering neutrino oscillations]

without any extra assumptions

difficult to realize additional tests of the high-energy theory

e.g. the (type I) see-saw depends on many physical parameters: 3 (small) masses + 3 (large) masses 3 (L) mixing angles + 3 (R) mixing angles 6 physical phases = 18 parameters

the double of those describing $(L_{SM})+L_5$: 3 masses, 3 mixing angles and 3 phases

1st assumption: there is new physics at a scale $M \approx (1 \div 10)$ TeV $\ll M_{GUT}$

the energy region close to M will be explored by LHC soon

highly desirable to investigate the impact of L_5 on the physics at the scale M

 2^{st} assumption: high-energy theory invariant under a flavor symmetry G_f broken by a set of $\langle \phi \rangle \ll 1$ (in units of Λ)

in the lepton sector

$$L_{mass} = -e^{c}H^{+}y_{e}(\varphi)l + \frac{(\tilde{H}^{+}l)Y(\varphi)(\tilde{H}^{+}l)}{\Lambda_{L}} + h.c. + \dots \quad G_{f}\text{-invariant}$$

after G_f breaking from < ϕ >, masses of charged leptons and of neutrinos are generated

$$m_{l} = \frac{v}{\sqrt{2}} y_{e}(\langle \varphi \rangle) \qquad \qquad m_{v} = \frac{v^{2}}{\Lambda_{L}} Y(\langle \varphi \rangle)$$

at energies E<M, after integrating out the d.o.f. associated to the scale M

$$L_{eff} = L_{mass} + i \frac{e}{M^2} e^c H^+ (\sigma^{\mu\nu} F_{\mu\nu}) \mathcal{M}(\langle \varphi \rangle) l + h.c. + \dots$$

[4-fermion operators]

 L_{eff} local operator, still invariant under G_f [by treating < φ > as spurions] [neglecting RGE effects, still controlled by < φ >, but not local in < φ >]

- effects with 1/M² suppression can be observable
- flavor pattern in L_{eff} controlled (up to RGE effects) by the same SB parameters < ϕ > that control m_e and m_v
- in the basis where charged leptons are diagonal

. . .

- bounds on the scale M, from the present limits on d_i , a_i , R_{ij}

- correlations among d_i , a_i , R_{ij} and ϑ_{13} from the pattern $\langle \phi \rangle$

here: 2 examples

Minimal Flavor Violation [MFV] $G_f = SU(3)_l \times SU(3)_{e^c} \times ...$

$$\varphi = \begin{cases} y_e = (3, \overline{3}) & e^c = (1, 3) \\ y_e = (3, \overline{3}) & Q \\ Y = (6, 1) & Q \end{cases}$$

[D'Ambrosio, Giudice, Isidori, Strumia 2002 Cirigliano, Grinstein, Isidori, Wise 2005]

the largest G_{f}

 $G_{\rm f}$ broken only by the Yukawa coupling of $L_{\rm SM}$ and L_5

 \boldsymbol{y}_e and \boldsymbol{Y} can be expressed in terms of lepton masses and mixing angles

$$y_e = \sqrt{2} \frac{m_e^{diag}}{v} \qquad \qquad Y = \frac{\Lambda_L}{v^2} U^* m_v^{diag} U^+$$

$$G_{f} = A_{4} \times Z_{3} \times U(1)_{FN}$$

 $l = (3, \omega, 0)$ $e^{c} = (1, \omega^{2}, +2)$ $\mu^{c} = (1'', \omega^{2}, +1)$ $\tau^{c} = (1', \omega^{2}, 0)$

can also be extended to the quark sector [F, Hagedorn, Lin, Merlo 0702194, Altarelli,F, Hagedorn 08020090]

explicitly tailored to reproduce a nearly tri-bimaximal (TB) mixing

[Ma, Rajasekaran 2001; Ma 0409075; Altarelli & F. 0504165 & 0512103 Altarelli, F, Lin 0610165]

$$\varphi = \begin{cases} \varphi_T / \Lambda = (3,1,0) \\ \varphi_S / \Lambda = (3,\omega,0) \\ \xi / \Lambda = (1,\omega,0) \\ \vartheta / \Lambda = (1,1,-1) \end{cases}$$

TM mixing requires a specific vacuum alignment

$$\langle \varphi_T \rangle / \Lambda = (u,0,0) + O(u^2)$$
 tau Yukawa coupling < 4

$$\langle \varphi_S \rangle / \Lambda = (u,u,u) + O(u^2)$$
 $0.001 < u < \lambda^2$ corrections to

$$t \approx \lambda^2 \qquad \lambda \approx 0.22$$
 $\vartheta_{13} = O(u)$

$$y_e(\langle \varphi \rangle) = \begin{pmatrix} c_e t^2 u & 0 & 0 \\ 0 & c_\mu t u & 0 \\ 0 & 0 & c_\tau u \end{pmatrix} + O(u^2) \qquad Y(\langle \varphi \rangle) = \begin{pmatrix} a+2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a-b/3 \\ -b/3 & a-b/3 & 2b/3 \end{pmatrix} u + O(u^2)$$

 $\left[\mathcal{M}(\langle \varphi \rangle) \right]_{ij}$ in MFV

$$L_{eff} = i\alpha \frac{e}{M^2} e^c H^+ (\sigma^{\mu\nu} F_{\mu\nu}) y_e l + \dots$$

$$\begin{array}{c|c} d_{e} < 1.6 \times 10^{-27} \ e \ cm & M > 80 \ TeV \Leftarrow & \alpha \ \text{approximately} \\ \hline d_{\mu} < 2.8 \times 10^{-19} \ e \ cm & M > 80 \ GeV \\ \hline \delta a_{e} < 3.8 \times 10^{-12} & M > 350 \ GeV \\ \hline \delta a_{\mu} \approx 30 \times 10^{-10} & M \approx 2.7 \ TeV \end{array} \begin{array}{c} \text{[from recent review} \\ \text{by Raidal et al 08011826]} \end{array}$$

[warning: relation between the scale M and new particle masses M' can be not trivial. In a weakly interacting theory g M/4 $\pi\approx$ M']

$$\left[\mathcal{M}(\langle \varphi \rangle) \right]_{ij} = \beta \left(y_e Y^+ Y \right)_{ij} + \dots$$

$$= \sqrt{2}\beta \frac{(m_l)_{ii}}{v} \frac{\Lambda_L^2}{v^4} \left[\Delta m_{sol}^2 U_{i2} U_{j2}^* \pm \Delta m_{atm}^2 U_{i3} U_{j3}^* \right] + \dots$$

a positive signal at MEG $~10^{-11}$
R $_{\mu e}$
 $~10^{-13}\div10^{-14}~$ always be accommodated [but for a small interval around $\vartheta_{13}\approx0.02$ where R $_{\mu e}$ =0]

non-observation of R_{ij} can be accommodated by lowering Λ_L

$$\begin{pmatrix} R_{\mu e} \\ R_{\tau \mu} \end{pmatrix} \approx \left| \frac{2}{3} r \pm \sqrt{2} \sin \vartheta_{13} e^{i\delta} \right|^{2} < 1 \qquad r \equiv \frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}} \qquad \text{[Cirigliano, Grinstein, Isidori, Wise 2005]}$$

$$\begin{array}{c} \text{both} \\ \mu \rightarrow e\gamma \text{ and } \tau \rightarrow \mu\gamma \\ \text{could be above future} \\ \text{sensitivity} \\ 0.02 \\ 0.02 \\ 0.1 \\ \text{we} < 10^{-9} \\ 0.2 \\ \text{we} < 0.1 \\ 0.2 \\ \text{we} < 0.2 \\ 0.2 \\ \text{we} < 0.1 \\ 0.2 \\ \text{we} < 0.2 \\ 0.2 \\ \text{we} < 0.2 \\ 0.2 \\ \text{we} < 0.2 \\ 0.2 \\ 0.2 \\ \text{we} < 0.2 \\ 0.$$

$$\left[\mathcal{M}(\langle \varphi \rangle)\right]_{ij}$$
 in $A_4 \times ...$

[F, Hagedorn, Lin, Merlo, in preparation]

$$\mathcal{M}(\langle \varphi \rangle) = \begin{pmatrix} O(t^2 u) & \cdot & \cdot \\ O(t u^2) & O(t u) & \cdot \\ O(u^2) & O(u^2) & O(u) \end{pmatrix}$$

in the basis where charged leptons are diagonal; operators contribute to both \mathcal{M}_{ii} and \mathcal{M}_{ij} (i≠j)

diagonal elements $\left[\mathcal{M}(\langle \varphi \rangle)\right]_{ii}$ are of the same size as in MFV: similar lower bounds on the scale M

up to O(1) coefficients $R_{\mu e} \approx R_{\tau \mu} \approx R_{\tau e}$ independently from ϑ_{13}

 $\tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma$ below expected future sensitivity

$$\begin{split} R_{\mu e} < 1.2 \times 10^{-11} (10^{-13}) \Rightarrow \frac{u}{M^2} < 1.2 \times 10^{-11} (1.1 \times 10^{-12}) \ GeV^{-2} \\ u > 0.001 \Rightarrow M > 10(30) \quad TeV \\ u \approx 0.05 \Rightarrow M > 70(200) \quad TeV \end{split} \begin{array}{l} \text{probably above the region} \\ \text{of interest for the } \mu \ (g-2) \\ \text{and for LHC} \end{split}$$

$$\left[\mathcal{M}(\langle \varphi \rangle)\right]_{ij}$$
 in $A_4 \times ...$

with high-energy theory both A₄ and SUSY invariant [preliminary]

$$\mathcal{M}(\langle \varphi \rangle) = \begin{pmatrix} O(t^2 u) & \cdot & \cdot \\ O(t u^3) & O(t u) & \cdot \\ O(u^3) & O(u^3) & O(u) \end{pmatrix}$$

in the basis where charged leptons are diagonal

we have preliminary indications that off-diagonal elements $\left[\mathcal{M}(\langle \varphi \rangle)\right]_{ij}$ are down by a factor of O(u) compared to generic non-SUSY case

up to O(1) coefficients
$$R_{\mu e} \approx R_{\tau \mu} \approx R_{\tau e}$$
 independently from ϑ_{13}
 $R_{\mu e} < 1.2 \times 10^{-11} (10^{-13}) \Rightarrow \frac{u^2}{M^2} < 1.2 \times 10^{-11} (1.1 \times 10^{-12}) \ GeV^{-2}$
 $u > 0.001 \Rightarrow M > 0.3(1) \ TeV$
 $u \approx 0.05 \Rightarrow M > 2(7) \ TeV$
 $BR(\mu \to e\gamma) = \frac{12\pi^3 \alpha_{em}}{G_F^2 m_{\mu}^4} (\delta a_{\mu})^2 [\gamma \vartheta_{13}]^4$
 $0.0014 \times (\frac{\delta a_{\mu}}{30 \times 10^{-10}})^2$

MFV [scale M can be of order 1 TeV]

$$R_{\mu e} < 1.2 \times 10^{-11}$$

implies
 $R_{\tau \mu} < 10^{-9}$

 ϑ_{13}

0.02 here $\mu \rightarrow e\gamma$ vanishes

SUSYXA₄ [scale M can be of order 1 TeV (preliminary)]

Conclusion

theory of neutrino masses

it does not exist! Neither for neutrinos nor for charged fermions. We lack a unifying principle.

like weak interactions before the electroweak theory

all fermion-gauge boson interactions in terms of 2 parameters: g and g'

Yukawa interactions between fermions + and spin 0 particles: many free parameters (up to 22 in the SM!)

only few ideas and prejudices about neutrino masses and mixing angles

caveat: several prejudices turned out to be wrong in the past!

- $m_v \approx 10 \text{ eV}$ because is the cosmologically relevant range
- solution to solar is MSW Small Angle
- atmospheric neutrino problem will go away because it implies a large angle

□ Most of plausible range for Ue3 explored in 10 yr from now

	current precision	future < 10 yr
Δm_{12}^2	$(8.0 \pm 0.3) \times 10^{-5} \text{ eV}^2 \ [\approx 4\%]$	few percent [KamLAND]
$\left \Delta m_{23}^2\right $	$(2.5 \pm 0.3) \times 10^{-3} \text{ eV}^2 \ [\approx 12\%]$	$0.15 \times 10^{-3} \text{ eV}^2$ LBL conventional beams $0.05 \times 10^{-3} \text{ eV}^2 [\approx 2\%]$ superbeams
ϑ_{12}	$\tan^2 \vartheta_{12} = 0.45^{+0.09}_{-0.08}$ $\vartheta_{12} = 33^0 \pm 2^0$	$\delta \tan^2 \vartheta_{12} \approx 2\delta \sin^2 \vartheta_{12} V_e$ scattering rate down by about of pp neutrinos to 1% a factor 2: challenging
ϑ_{13}	$< 0.23 (13^{0}) 90\%$ C.L.	0.10 rad LBL, ChoozII 0.05 rad superbeams
ϑ_{23}	$\sin^2 \vartheta_{23} = 0.52^{+0.07}_{-0.08}$ $\vartheta_{12} = 46^{0^{+4^0}_{-5^0}}$	$\delta \sin^2 \vartheta_{23} \approx \delta \vartheta_{23}$ down by about superbeams a factor 2
sign Δm_{23}^2		> 10 yr
δ		> 10 yr

non-oscillation "solutions"

v decay	$P_{ff} = c + c' e^{-\frac{mL}{\tau E}} + \dots$	wrong E dependence
v decoherence	$P_{ff} = 1 - \frac{1}{2}\sin^2 2\vartheta(1 - e^{-\frac{\gamma L}{E}}\cos\frac{\Delta m^2 L}{2E})$	wrong E dependence
spin flavour precession (for solar v)	$\mu_{ij} \approx 10^{-11} \mu_B B \approx 80 \text{KGauss}$	rejected by KamLAND no such large B in Earth
Lorentz invariance violation	$P_{ff} = 1 - \sin^2 2\vartheta \sin^2(\delta c LE / 2)$	wrong E dependence
non-standard v interactions	$\delta L = \varepsilon G_F \psi \psi v v$ E-independent P_{ff}	sol: clash between solar and KamLAND data atm: wrong E dependence
mass varying neutrinos	$\delta m_{v} = \frac{\lambda \lambda}{m^2} N_e$	sol: clash between solar and KamLAND data
v oscillations with a non unitary mixing matrix U	non-canonical v kinetic terms in flavour basis from dim=6 operator	v oscillations, W,Z decays universality tests, LFV UU ⁺ =1 at the percent level

all these effects can play, at most, a subleading role

Flavor symmetries II (the lepton mixing puzzle)

why
$$U_{PMNS} \approx U_{TB} \equiv \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
?
[TB=TriBimaximal]

$$U_{PMNS} = U_e^+ U_v$$

Consider a flavor symmetry G_f such that G_f is broken into two different subgroups: G_e in the charged lepton sector, and G_v in the neutrino sector. m_e is invariant under G_e and m_v is invariant under G_v . If G_e and G_v are appropriately chosen, the constraints on m_e and m_v can give rise to the observed U_{PMNS} .

The simplest example is based on a small discrete group, $G_f = A_4$. It is the subgroup of SO(3) leaving a regular tetrahedron invariant. The elements of A_4 can all be generated starting from two of them: S and T such that

$$S^2 = T^3 = (ST)^3 = 1$$

S generates a subgroup Z_2 of A_4 T generates a subgroup Z_3 of A_4

simple models have been constructed where $G_e=Z_3$ and $G_v=Z_2$ and where the lepton mixing matrix U_{PMNS} is automatically U_{TB} , at the leading order in the SB parameters. Small corrections are induced by higher order terms.

the generic predictions of this approach is that θ_{13} and $(\theta_{23}-\pi/4)$ are very small quantities, of the order of few percent: testable in a not-so-far future.

Conclusion

theory of neutrino masses

it does not exist! Neither for neutrinos nor for charged fermions. We lack a unifying principle.

like weak interactions before the electroweak theory

all fermion-gauge boson interactions in terms of 2 parameters: g and g'

Yukawa interactions between fermions + and spin 0 particles: many free parameters (up to 22 in the SM!)

only few ideas and prejudices about neutrino masses and mixing angles

caveat: several prejudices turned out to be wrong in the past!

- $m_v \approx 10 \text{ eV}$ because is the cosmologically relevant range
- solution to solar is MSW Small Angle
- atmospheric neutrino problem will go away because it implies a large angle